
TTK, An iPod GUI Library

Joshua Oreman

Sunday, October 9, 2005

Contents

1 Architecture 3

1.1 Why Use TTK? . 3

1.2 Windows . 4

1.3 Widgets . 5

1.4 Events . 6

1.4.1 Immediate Events . 7

1.4.2 Periodic Events . 8

1.4.3 Computed Events . 8

1.5 Text Input . 9

1.6 Graphics Drawing . 9

1.7 Appearance . 10

1.8 Nano-X Emulation . 11

2 Macros and Globals 12

2.1 Macros . 12

2.2 Globals . 14

3 Data Structures 16

3.1 TWindow . 16

3.2 TWidget . 17

3.3 TWidgetList and TWindowStack 20

3.4 TApItem . 20

3.5 ttk_fontinfo and ttk_screeninfo 21

1

4 Function Reference 24

4.1 Initialization and Querying . 24

4.2 Window Management . 25

4.3 Widget Management . 27

4.4 Events and Input . 28

4.5 iPod-Specific Functions . 30

4.6 Appearance Functions . 30

4.7 Graphics Functions . 31

4.7.1 Surface and Color Functions 31

4.7.2 Graphics Context Functions 33

4.7.3 Graphics Primitives . 34

4.7.4 Text and Font Functions 35

4.8 Miscellaneous . 36

4.9 Nano-X Emulation . 37

5 Widgets 40

5.1 Menu . 40

5.1.1 The Widget . 40

5.1.2 Flags . 43

5.1.3 Window Lifetimes . 43

5.1.4 The Menu Handler . 44

5.1.5 Menu Data Assemblers 44

5.1.6 Functions . 45

5.2 Textarea . 47

5.3 Slider . 48

5.4 Image Viewer . 49

6 Data Files 51

6.1 Fonts . 51

6.2 Font List . 52

6.3 Color Schemes . 53

7 Acknowledgements 56

2

Chapter 1

Architecture

TTK is a library for the creation of graphical user interfaces on the
iPod, along with a few other things.

This chapter will present all the information you need to program the library,
including recommended ways to do various things, except the actual func-
tion calls and data structures themselves. Those are documented in later
chapeters. Functions may be mentioned, but only when understanding them
is essential to understanding the library as a whole.

1.1 Why Use TTK?

“Wait!” I can hear you wondering. “Why should I use TTK? I’ve already
learned Nano-X/SDL/whatever, why should I switch now?” Well, that’s
an objection that’s inevitably going to come up, and I hope to answer it
here. The first thing I’d recommend is to read this introductory chapter; it
describes most of what TTK is about. But if you need some quick reasons,
here they are:

• TTK is a higher-level library than what you’re used to, so you can do
larger things more easily and not have to reinvent the wheel quite so
often.

3

• TTK has intelligent event handling, with things like held-button timers;
scrollwheel taps; making sure different parts of a button press and
release aren’t sent to different widgets; turning a bunch of “button
press r” events into one, more efficient “scroll right by x”; etc.

• TTK only draws your stuff when it needs to be drawn, and sleeps rather
a lot during its event loop; thus, background processes like MPD may
well run more quickly.

• TTK acts as an abstraction layer between your code and a lower-level
graphics library; if someone develops FooGraphics for the iPod, and it
runs ten times as fast as current code, making TTK programs use it is
a simple matter of writing a backend for TTK.

• TTK makes easy things easy. It takes about ten lines of code (not
including the menu definitions) to make a program that displays a
menu, with submenus.

• TTK makes some hard things easy. Want to save your settings on exit
from that menu? Fine, just set menu->down = my_down; and make
my_down save settings if the button pressed is MENU, before calling
ttk_menu_down.

• TTK makes hard things possible. You have a lot of flexibility, and you
can do pretty low-level things if you really need to. Heck, you can blast
data right to the LCD screen if you want to do that.

• TTK is extensible. New widgets that fit in with the existing ones are
quite easy to write (comparatively for a GUI), and people can use your
code by calling new_my_widget just like they might call ttk_new_menu_
widget.

1.2 Windows

An application written with TTK will be comprised of multiple “windows”,
each usually opening from a menu (itself a window, etc). For instance, the
main menu of podzilla is a window, as is the submenu opened when you se-
lect “Extras”, as is the window opened when you select “Hunt the Wumpus.”

4

This stacked-window paradigm is different from the one seen on most desktop
systems: you can’t drag windows around, there is no “window dressing”, and
you aren’t really supposed to have multiple windows per application (though
it certainly can be done).

Basically, windows function as a stack, of which usually only the topmost
item is visible; when a popup window like an alert or dialog is on the stack,
you can still see the appropriate parts of the obscured window, but it receives
no events until the upper window is closed. Basically, the “window stack”
functions as more of a useful bookkeeping device than anything, allowing
e.g. any widget to easily move up a window, whatever is in said window,
and letting you “minimize” windows (send temporarily to bottom of stack),
change their Z-axis order, etc.

TTK windows aren’t really like pure X11 windows either; the X11 win-
dows are just canvasses, while TTK windows have some important associ-
ated information. For instance, each window can define a title, which will
be shown in the header, assuming you haven’t set said header to be hidden
(another window property). Basically, the properties of windows have been
morphed into those useful for an iPod user interface—one with a lot of hi-
erarchial GUI elements. Just remember that a window contains, generally,
everything you want on the screen for the user to interact with at once, and
you’ll be fine.

1.3 Widgets

But windows aren’t all; if they were, you’d have an app consisting of a lot of
titled, blank canvasses.

Windows contain zero or more widgets, which are just GUI elements
that can be drawn on the screen and possibly take input from the
user. Widgets can be either output widgets or input widgets; don’t let the
names confuse you, the latter is a superset of the former. Output widgets
take no input; their output can be variable, but it depends on external factors
(like the state of another widget or the charge of a battery). Input widgets are
the ones that form the backbone of the system. When focused, they capture
all input and can perform widget-dependent actions based on it. Examples
might include a menu, text box, file editor, hypertext browser, etc. There

5

can only be one top-level input widget per window. If you want more, make
a widget that manages that! :-) Input widgets are identified by setting the
focusable flag in the widget structure.

Sometimes we will refer to a window’s “focused widget.” That’s just the
first input widget of that window. This means you can have more than one
input widget per window; the others will simply be displayed, but will receive
no events. Thus, if you want to be able to switch between widgets (e.g. in a
form), you need to make one widget that will be put in the window and have
all other input widgets inserted into it; that widget can figure out a good
way to move input between its children. (Note that TTK does not actually
have any concept of widget or window “parents” or “children”; the word is
used here simply in an illustrative context.)

Widget structures contain, along with various settings like positioning
and size, several function pointers. These are scroll, stap, button, down, held,
frame, timer, and destroy. Each is called when the appropriate event happens.
(The events will be described in detail below.) Each event handler is expected
to do whatever it needs with the widget structure, determine whether the
widget needs to be redrawn, and if so set the dirty flag.

The dirty flag is used to save CPU cycles and make TTK applications
faster. Basically, widgets will not be drawn on the screen (actually, the
window’s double buffer) unless the flag is set. It is cleared after each draw.
Therefore, every time you make a change to a widget and expect it to be
seen, you must set the dirty flag. If widgets are not being drawn, that’s
the first thing to check.

Finally, each widget has a widget-specific data member (a void *) that
can be whatever you want. Most complex widgets will use it to store a
pointer to a structure containing widget-specific parameters; some simple
widgets might not need to use it at all. TTK itself couldn’t care less about
the value of this parameter; it is only intended for use by widget handler
functions.

1.4 Events

Any time something interesting happens in TTK, it creates an event. There
are three main types of events: immediate events, periodic events, and com-
puted events.

6

1.4.1 Immediate Events

Immediate events are those created immediately by some input on the iPod
(or your keyboard for a desktop build); they are the down (button press),
button (button release), and scroll (scrollwheel movement) events. These
events will be passed first to a global event handler, which can be set by the
application. That event handler may do whatever it wants, and returns a
code indicating whether or not the event should be processed further. If not,
it is thrown out, and the event will never make it to the widget.

scroll events are generated, by default, 96 to a full rotation of the wheel.
This is quite a high speed, and it is certainly not expected that one “step” will
move one item; instead, each widget is intended to put a line at the beginning
of their scroll handler: TTK_SCROLLMOD(dir,N). This will modulate the
scrolling by N ; for instance, if N = 5, the widget will process 19–20 scroll
events per rotation. (On the iPod, the SCROLLMOD macro simply returns 0
from the handler if the event is not to be processed; it uses a static variable
called sofar, which it creates itself. On the desktop, it is ignored.) You
can, of course, use another mechanism for processing scroll events; the slider
widget modulates them itself so that one rotation covers the distance between
the minimum and maximum values on the slider. The global wheel sensitivity
is independent of this scroll modulation.

input is also an immediate event, but it is rather different from the rest;
see “Text Input” below.

After immediate events get past the global event handler, they are dis-
patched to the focused widget of the top window. There are, however, a few
situations that cause immediate events not to fire:

• If a key is repeating, different parts of the same repeat (down events
without intervening button events) will not be sent to different widgets.

• A down event and the corresponding button event will not be sent to
different widgets.

• Pressing a button will cancel any stap event that might have been fired;
see below.

7

1.4.2 Periodic Events

Periodic events are events that fire every certain amount of time; they are
the frame and timer events. They have separate handlers, but they differ only
in the way they are set: frame events are set with a frames-per-second value,
which is used to compute the milliseconds of delay, while timer events are set
with a direct milliseconds value. Thus, one could use them for two separate
but equally important timers; or one could use e.g. frame for a game’s loop
and timer for a one-shot timer (the handler would have to deactivate the
timer if you wanted one-shot behavior).

1.4.3 Computed Events

Computed events are those that are fired based on information gleaned
through immediate events and through (on an iPod) examining hardware
registers. There are two: held and stap.

held events are fired whenever a button is held down for more than the
holdtime value (in milliseconds) specified in the focused widget. The button
does not have to be released for the event to be fired.

stap events are fired, on 4G iPods and above, when the user taps the
scroll wheel. Various heuristics are used to differentiate between stap events,
scroll events, and down events. They generally work very well, though one of
their consequences is that scrollwheel tap events cannot be detected until the
user lifts his/her finger from the wheel surface. This is probably not optimal
behavior, but there is no other way to be sure of a user’s intent; he may, for
instance, be lingering before starting to scroll. Here are the heuristics, for
those who are interested:

• As stated above, pushing a button cancels any otherwise-good scroll-
wheel tap.

• If the user’s finger moved more than 1/20 of the wheel’s circumference
while touching it, the stap event is thrown out.

• If the user held his/her finger for more than 2/5 of a second, the event
is thrown out.

• Otherwise, a stap event will be fired.

8

1.5 Text Input

TTK has a generic mechanism to let you create text input methods that
allow the user to input text using only the interface of the iPod. The specific
mechanism for text input (be it an onscreen keyboard, telephone keypad,
whatever) is not specified.

Basically, a text input method is just a widget written in a special way.
Text input is started with ttk_input_start(method) from a widget. From
that point on, the widget will not receive any immediate or computed events.
Instead, these will go to the text input method widget. When the user has
fully specified a character, the text input method calls ttk_input_char(ch),
which causes an input event to be delivered to the widget that originally
started text input. To end text input, either the text input method or the
calling widget may call ttk_input_end(), which also frees the input method
structure.

Different text input methods vary in the amount of screen space they
need. Something like a Morse code input might need only a single status
line at the bottom, whereas an on-screen keyboard might need much more
space. As such, ttk_input_start() will return the height of the text input
method’s screen space, so that the calling widget can adjust its own size.
Some input methods, like a telephone keypad, might need a square patch of
space instead of a line all the way across the bottom of the screen; these can
be positioned in a convenient location by ttk_input_move() for fullscreen
applications.

1.6 Graphics Drawing

TTK supports two backends at present: SDL and Nano-X. As such, to sup-
port users coming from a background of either, it has two main graphics-
drawing interfaces.

For both interfaces, the core types are the same. A ttk_surface repre-
sents an area where things can be drawn: basically, a rectangular array of
pixels. A ttk_color represents the color of a pixel; it would differ depend-
ing on whether the program was run on a 24-bpp desktop, the iPod Photo,
a monochrome iPod, etc. A ttk_point represents a point, with x and y

members. Finally, a ttk_font represents a font.

9

The SDL-like graphics drawing interface is that exported by funtions with
names like ttk_rect, ttk_fillellipse, and ttk_text. The Nano-X-like
functions have a _gc suffix: ttk_rect_gc, ttk_fillellipse_gc, ttk_text_gc,
etc. The SDL-like functions pass parameters like fonts and colors as argu-
ments to the function, while the Nano-X-like ones use a graphics context.
A graphics context stores five things: a foreground color, a background color
(used for text drawing only), a flag indicating whether to use that back-
ground color, a font, and a flag indicating whether to use ttk_fillrect as
a region inverter instead of a region filler (the xormode flag). Graphics con-
text support is intended for the easier migration of Nano-X applications and
Nano-X users.

The graphics drawing functions themselves work as one would expect,
and will not be documented here. See Chapter 3 for the full details regarding
which functions are available.

1.7 Appearance

In order to give the user more flexibility in choosing how they want their
applications to look, TTK supports an appearance facility. This loads spe-
cially formatted text files (see Chapter 5 for the format), each consisting of a
bunch of named entries that can have three properties: a background image,
a background color, and some spacing. The spacing is used to shrink or grow
rectangles so they have some padding around them; or to move vertical lines
left or right, or horizontal lines up or down.

In order to support this useful facility, there is not that much you need
to do. Mainly, replace calls like these:

ttk_rect(srf, x, y, w, h, color);

with calls like these.

ttk_ap_rect(srf, ttk_ap_get("property"), x, y, w, h);

The same applies to fillrects, and horizontal and vertical lines. The
ttk_ap_* calls ensure that all three properties—color, image, and spacing—
are supported where applicable. However, you may want just the color, for
instance to figure out what color to make some text. In that case, you should
use something like

10

ttk_text(srf, font, x, y, ttk_ap_getx("property")->color, str);

Note the use of ttk_ap_getx; this causes the returned value on not finding
an entry to be a pointer to a structure with dummy values, instead of a NULL
pointer. You should always use ttk_ap_getx when you will be immediately
dereferencing the result, so as to avoid a segmentation fault.

The dummy values are, by the way: no spacing, no image, black color,
and a name of "NO_SUCH_ITEM".

1.8 Nano-X Emulation

The main player in the iPod graphics field before TTK was Nano-X (formerly
Microwindows). Since a rather large body of applications was written for
Nano-X, not the least of which was podzilla, an API emulation layer was
necessary to allow easy and gradual porting. One of the reasons that an
earlier iPod GUI library, PTK, failed to make much of an impact was its
incompatibility with what had come before it; TTK does not intend to fall
into such a situation. Thus, the emulation.

The Nano-X emulation encompasses 45 functions, enough for full Podzilla
support. Notable unimplemented functions include GrSetWindowBackground-
Color, GrSetScreenSaverTimeout, and GrArc. All implemented functions
have a t_ at the beginning of their names, e.g. t_GrFillRect; if you do
not #define MWBACKEND, the non-t_ versions will be #defined to their t_

equivalents.

This emulation has met with great success in, and has in part been shaped
by, the porting of podzilla to TTK. That is: It works.

11

Chapter 2

Macros and Globals

2.1 Macros

#define TTK_POD_X11 0

#define TTK_POD_1G 01

#define TTK_POD_2G 02

#define TTK_POD_3G 04

#define TTK_POD_PP5002 07

#define TTK_POD_4G 010

#define TTK_POD_MINI_1G 020

#define TTK_POD_PHOTO 040

#define TTK_POD_PP5020 070

#define TTK_POD_MINI_2G 0100

#define TTK_POD_PP5022 0700

#define TTK_POD_PP502X 0770

These are the bitmasks for possible return values from ttk_get_podversion().

#define TTK_BUTTON_ACTION ’\n’

#define TTK_BUTTON_PREVIOUS ’w’

#define TTK_BUTTON_NEXT ’f’

#define TTK_BUTTON_MENU ’m’

#define TTK_BUTTON_PLAY ’d’

#define TTK_BUTTON_HOLD ’h’

12

These are the definitions of buttons; whenever you see a parameter called
button, it will be one of these.

#define TTK_MOVE_ABS 0

#define TTK_MOVE_REL 1

#define TTK_MOVE_END 2

These are the arguments to the ttk_move_window() function.

#define TTK_DIRTY_HEADER 1

#define TTK_DIRTY_WINDOWAREA 2

#define TTK_FILTHY 3

extern int ttk_dirty;

These control what big things need to be redrawn right now. If you do
ttk_dirty |= TTK_DIRTY_HEADER, the header will be redrawn. TTK_DIRTY_
WINDOWAREA will redraw the current window on the screen, but not its wid-
gets. (They’ll be at their state when they were last drawn.) TTK_DIRTY_FILTHY

does both of these, and possibly more. Basically, it redraws everything.

#define TTK_EV_CLICK 1

#define TTK_EV_UNUSED 2

#define TTK_EV_DONE 4

#define TTK_EV_RET(x) ((x)<<8)

These are the possible return values (bitwise OR) from event handlers, with
the exception of the global event handler (its return value indicates whether
or not to process the event further).

#define TTK_INPUT_ENTER ’\r’

#define TTK_INPUT_BKSP ’\b’

#define TTK_INPUT_LEFT ’\1’

#define TTK_INPUT_RIGHT ’\2’

#define TTK_INPUT_END ’\0’

These are the special characters that can be passed to an input event; most of
them are self-explanatory. TTK_TEXT_END is sent just after ttk_input_end()
is called; this gives you a chance to e.g. show a menu or something.

13

TTK_EV_CLICK causes TTK to emit a clicking sound. See ttk_click().

TTK_EV_UNUSED causes TTK to call the global unused handler for this event,
if one is defined.

TTK_EV_DONE causes ttk_run() to return after processing this event.

TTK_EV_RET(x) in conjunction with TTK_EV_DONE causes ttk_run()’s return
value to be x.

#define WHITE 255, 255, 255

#define GREY 160, 160, 160

#define DKGREY 80, 80, 80

#define BLACK 0, 0, 0

These are the allowable colors on black-and-white iPods. They should be
used in a context like

mycolor = ttk_makecol (WHITE);

2.2 Globals

extern TWindowStack *ttk_windows;

extern ttk_font ttk_menufont, ttk_textfont;

extern ttk_screeninfo *ttk_screen;

extern ttk_fontinfo *ttk_fonts;

extern int ttk_epoch;

These are TTK’s globals. See below for information about their structures.

ttk_windows is the stack of all windows onscreen, including those that are
invisible because they are obscured. The first item is the top window.

ttk_menufont is the font used for “menu-like” things: the header; menu
widgets; larger text; etc. It must be defined right after you initialize
TTK.

14

ttk_textfont is the font used for “text-like” things: textarea widgets, etc.
It probably shouldn’t be bigger than ttk_menufont, and also must be
defined early on.

ttk_screen contains information about the current screen setup, as well as
the screen surface itself. The most important members are ttk_screen->w,
ttk_screen->h, and ttk_screen->bpp.

ttk_fonts is a linked list of fonts, along with information about each one.
You probably shouldn’t traverse this by hand, but you can if you want
to.

ttk_epoch is an odd little variable that deserves special mention. Basically,
it’s a “redraw everything” mechanism. Anything that needs to draw
stuff is supposed to keep its own private epoch variable, and check it
against ttk_epoch as often as possible. If there is a mismatch, ev-
erything is redrawn. This applies not only to the obvious—ttk_run()

controlling the drawing of widgets—but also to things like the menu
widget, textarea widget, etc. that make double-buffer surfaces when
initialized so they can draw themselves more quickly.

The end result of all this is that when you change the font or the color
scheme, you should increment ttk_epoch.

15

Chapter 3

Data Structures

The TTK API contains several important data structures. In general, the
“major” structures (appearance stuff, widgets, windows, and their ilk) are
named TSomething, while the “minor” ones (screen info, font info, points,
etc.) are named ttk_something. The structures are described below.

3.1 TWindow

typedef struct TWindow

{

const char *title;

TWidgetList *widgets;

int x, y, w, h, color;

ttk_surface srf;

int titlefree;

int dirty;

struct TApItem *background;

/* readonly */ struct TWidget *focus;

int data;

} TWindow;

title stores the window’s title for the header.

16

widgets is a list of all widgets in the window.

x, y, w, h indicates where the window goes onscreen. In general, you’ll
have x = ttk_screen->wx (usually 0), y = ttk_screen->wy (about
20), and w and h filling up the rest of the screen. If you change these,
that makes it a popup window, and you’ll get a border around it.

color is a flag that indicates whether or not this window supports color. It
has nothing to do with a particular color.

srf is the window’s double buffer. All widgets in the window will draw here,
and then it will be blitted to the screen every so often. You needn’t
concern yourself with the details.

titlefree is a flag that indicates whether title should be freed when the
window is freed. It is set by ttk_window_set_title().

dirty is a dirty flag for the whole window. If you set this, all widgets in the
window will be redrawn.

background is an appearance item for the background of the window. If you
leave this set to its default of 0, ttk_ap_getx("window.bg") will be
used instead.

focus points to the widget in widgets that has focus. You shouldn’t modify
this yourself, but you can use it to determine what the focused widget
is.

data is an int that you can use for whatever you want.

3.2 TWidget

typedef struct TWidget

{

int x, y, w, h;

int focusable;

int dirty;

int holdtime;

int keyrepeat;

17

int rawkeys;

/* readonly */ TWindow *win;

void (*draw) (struct TWidget *this, ttk_surface srf);

int (*scroll) (struct TWidget *this, int dir);

int (*stap) (struct TWidget *this, int where);

int (*button) (struct TWidget *this, int button, int time);

int (*down) (struct TWidget *this, int button);

int (*held) (struct TWidget *this, int button);

int (*input) (struct TWidget *this, int ch);

int (*frame) (struct TWidget *this);

int (*timer) (struct TWidget *this);

void (*destroy) (struct TWidget *this);

void *data;

} TWidget;

x, y, w, h indicate the geometry of the widget. A rectangle of this position
and size will be cleared prior to calling draw. If you don’t want any
clearing, set all four to zero.

focusable must be set to 1 if you want the widget to receive any events
other than frame and timer.

dirty must be set to 1 or above when you want the widget to be redrawn.
It is set to 0 every time draw is called.

holdtime is the amount of time, in milliseconds, that a button must be held
down for a held event to fire. The default is one second, 1000 ms.

keyrepeat must be set to 1 if you want to receive key-repeat events (they
will be received as multiple downs for one button.

rawkeys controls the events passed to this widget. If it is set to 0 (the
default), they will be passed as described in the rest of this manual.
If set to 1, however, no scroll events will be passed, and down and
button will receive ASCII keys as arguments. This is intended for use
in text-input methods for a full-size keyboard.

18

win stores a pointer to the window this widget is in. This is set by ttk_add_widget()

and should not be modified, or used before that function is called.

draw points to a function that will be called whenever the widget needs to
be drawn. The first argument points to the widget; the second is the
surface it should draw itself on.

scroll points to the event handler for scroll events. The first argument, as
usual, is the widget, while the second indicates how far the user scrolled.
(The units of “how far” are 96 to a full rotation.) It should return a
normal event code; see the definitions of TTK_EV_* above.

stap points to the event handler for scrollwheel tap events; the second argu-
ment indicates where on the scrollwheel the user tapped. 0 is at the
top, on top of the Menu button; numbers increase as you move clock-
wise around the wheel, and 95 is directly to the left of 0. Returns a
normal event code.

button points to the event handler for button release events. The second
argument indicates which button was released, and the third tells how
long it was pressed for, in milliseconds. Returns a normal event code.

down points to the event handler for button press events. The second argu-
ment shows which button was pressed. Returns a normal event code.

held is the event handler for button held events. The second argument refers
to which button was held. It should return a normal event code.

input is called whenever a character is input after ttk_input_start() has
been called. During this time, no other events will be passed to the
widget until ttk_input_end().

frame and timer are the two periodic event handlers discussed in Chapter
1. They should return TTK_EV_DONE if ttk_run() should return, and
0 otherwise.

destroy should free any widget-specific data in data, including data itself. It
should not free the widget.

data can be whatever the widget wishes to use it for.

19

3.3 TWidgetList and TWindowStack

Bunches of widgets and windows are managed with two similar linked-list
structures.

typedef struct TWindowStack {

TWindow *w;

int minimized;

struct TWindowStack *next;

} TWindowStack;

typedef struct TWidgetList

{

struct TWidget *v;

struct TWidgetList *next;

} TWidgetList;

In both structures, next points to the next entry in the linked list, or
NULL if this is the last entry. v or w points to the actual item; they are made
different in name so it is more difficult to confuse the two structures. Finally,
in TWindowStack only, the minimized item indicates that the window should
be moved down in the stack whenever it reaches the top.

3.4 TApItem

This structure defines the “appearance item”, which can be fetched with
ttk_ap_get[x]() and used with the ttk_ap_* functions.

#define TTK_AP_COLOR 1

#define TTK_AP_IMAGE 2

#define TTK_AP_SPACING 4

typedef struct TApItem

{

char *name;

int type;

20

ttk_color color;

ttk_surface img;

int spacing;

struct TApItem *next;

} TApItem;

name is the name of the property that was fetched, or "NO_SUCH_ITEM" if it
was the result of a failed search.

type is a bitwise OR of the TTK_AP_* constants, indicating which of those
properties are defined for this key. Those that are not defined are liable
to contain garbage.

color specifies the color for this item if type & TTK_AP_COLOR.

img specifies the background image for this item if type & TTK_AP_IMAGE.

spacing specifies the spacing value for this item if type & TTK_AP_SPACING.

next is a linked-list pointer, used internally.

Note that the TApItems you get from ttk_ap_get() and friends are point-
ers to internal data structures and should not be modified or freed.

3.5 ttk_fontinfo and ttk_screeninfo

typedef struct ttk_fontinfo {

char file[64];

char name[64];

int size;

ttk_font f;

int loaded;

int good;

int offset;

struct ttk_fontinfo *next;

} ttk_fontinfo;

21

Fonts are managed by a ttk_fontinfo structure that looks like this.
These structures generally occur in the linked list of ttk_fonts (a global),
and you can get the closest match for a particular font with the function
ttk_get_fontinfo(). (If you just want to draw text with the font, you
don’t need this structure; it’s only for those writing something like a font
selector.)

file is the filename of the font, including extension, relative to the font path
on this system. On the iPod, the font path is /usr/share/fonts; for
desktop builds, it’s fonts/ in the current directory.

name is the human-readable name of the font, which may include spaces.

size is the size of the font in pixels, as specified in the font list file. This
may or may not be the true size of the font, depending on how much
you trust the user.

f is the font itself. Unless loaded and good are both true, this points to
garbage.

loaded is a flag indicating whether the font has been loaded from disk.
Loading fonts takes a long time on the iPod—a second or two per
font—and those with lots of fonts would certainly not appreciate a
one-minute delay on program startup. Thus, fonts are loaded only on
demand (when you call ttk_get_font() or ttk_get_fontinfo()).

good is a flag indicating whether the font has been successfully loaded from
disk.

offset is an offset in vertical pixels to be used in drawing the font. Some
fonts have their characters too high in the bounding box; this lowers
them to a good position. The value is completely up to whoever makes
the font list file.

next is a pointer to the next ttk_fontinfo structure, if this one is in a
linked list.

typedef struct ttk_screeninfo {

int w, h, bpp;

22

int wx, wy;

ttk_surface srf;

} ttk_screeninfo;

Finally, the ttk_screeninfo structure gives information about the cur-
rent screen setup. w, h, and bpp give the screen’s width, height, and bits per
pixel; bpp will always be either 2 or 16. wx and wy give the (x, y) coordinates
of the upper-left hand corner of fullscreen windows; this allows a runtime-
specific header height. Finally, srf is the screen surface itself, which you
shouldn’t mess with unless you know what you’re doing.

23

Chapter 4

Function Reference

This chapter contains a reference to all the functions in TTK, sorted into
categories.

4.1 Initialization and Querying

TWindow *ttk_init();

int ttk_run();

void ttk_quit();

int ttk_get_podversion();

void ttk_get_screensize (int *w, int *h, int *bpp);

void ttk_set_emulation (int w, int h, int bpp);

These functions are used to initialize the library and ask various things
of it.

ttk_init initializes the library. This should be called as one of the first
things your program does; you can’t use any other functions until you
call it, unless otherwise indicated. Returns an initial window, al-
ready initialized and shown for you. If you don’t want this window for
some reason, feel free to hide and free it.

ttk_quit uninitializes the library. This should be called before your pro-
gram exits, as you otherwise probably won’t get your original terminal
restored. You might want to set this as an atexit() handler.

24

ttk_get_podversion Returns the version of the iPod the application is
running on, one of the TTK_POD_* macros defined above. The value is
cached after it is checked the first time, so this function is very fast.

ttk_get_screensize inserts the screen width into *w, the screen height into
*h, and the bit depth into *bpp, assuming none of those pointers are
NULL. (Any null pointers are skipped over.)

ttk_set_emulation sets the screen to be w×h×bpp pixels if the application
is running on X11. It is ignored on the iPod. This must be called before
ttk_init().

ttk_click produces the “click” sound that occurs on the iPod when you
scroll through menus etc. If running under X11, this function has no
effect.

ttk_run starts up event processing for a TTK application. Events will con-
tinue to be processed and sent to widgets, even if said widgets open
new windows and cause new widgets to come into focus. The event
processing will end when an event handler returns TTK_EV_DONE, and
the value set with TTK_EV_RET will be returned.

You are free to call ttk_run() from within an event handler; the canon-
ical example of this would be a menu option that opens a dialog box and
then does something with the dialog’s return value. If the dialog were
to be opened just before the event handler returned, the postprocess-
ing on whatever the user selected would be much more cumbersome.
A better way would be to show the dialog window, have one of its
event handlers returning TTK_EV_DONE, and then run a sub-ttk_run()
to “do the dialog.” The return value could then be read easily, and
appropriate action taken. (This is the technique used by podzilla.)

4.2 Window Management

TWindow *ttk_new_window();

void ttk_free_window (TWindow *win);

void ttk_show_window (TWindow *win);

void ttk_draw_window (TWindow *win);

25

void ttk_set_popup (TWindow *win);

void ttk_move_window (TWindow *win, int offset, int whence);

int ttk_hide_window (TWindow *win);

void ttk_popup_window (TWindow *win);

void ttk_window_title (TWindow *win, const char *str);

void ttk_window_show_header (TWindow *win);

void ttk_window_hide_header (TWindow *win);

#define ttk_popdown_window(w) ttk_hide_window(w)

#define ttk_window_set_title(w,s) ttk_window_title(w,s)

These functions are used to do practically everything with windows.

ttk_new_window creates a new window and returns it. The window title is
set to be “TTK,” and its geometry is set to cover the entire screen.
Other values are set to a sensible default.

ttk_free_window deallocates the memory used by a window. If the window
is shown onscreen, it is hidden first. All widgets in the window are
also freed.

ttk_show_window shows a window onscreen.

ttk_hide_window hides it. Returns the number of windows hidden (can
be more than 1 in degenerate cases or 0 if win is not shown). win will
be hidden even if it is the last window onscreen; however, in that case
ttk_run() will exit very soon.

ttk_draw_window draws a window to the screen in exactly the manner used
by ttk_run(). It is useful mainly for multi-window interfaces, where
lower windows need to be drawn though they are not receiving in-
put, and in combination with ttk_gfx_update() for animations in the
course of one event handler.

ttk_set_popup sets up a window to become a popup window. All widgets
should already be in the window. Widgets are moved and window size
is adjusted so that all widgets are moved as close as possible (relative to
one another) to the upper-left hand corner of the window, the window’s
width and height are made as small as possible, and x and y coordinates
are chosen so the window will be in the middle of the screen.

26

ttk_popup_window calls ttk_set_popup() followed by ttk_show_window().

ttk_move_window moves win to position offset in the window stack (with
the top window 0) if whence is TTK_MOVE_ABS; or moves win down
offset windows in the window stack if whence is TTK_MOVE_REL; or
moves win offset windows away from the end of the window stack if
whence is TTK_MOVE_END.

ttk_window_title (or ttk_window_set_title) sets the title of win to a
copy of str, sets a flag in win so the title will be freed when the
window is, and causes the header to be redrawn. If you don’t need all
of this, you can just do win->title = str.

ttk_window_show_header and ttk_window_hide_header cause the header
to be either shown or not shown, respectively, when this window is at
the top of the stack. This is useful for screensavers, and for widgets
that need as much screen space as possible.

4.3 Widget Management

TWidget *ttk_new_widget (int x, int y);

void ttk_free_widget (TWidget *wid);

TWindow *ttk_add_widget (TWindow *win, TWidget *wid); // returns win

int ttk_remove_widget (TWindow *win, TWidget *wid);

void ttk_widget_set_fps (TWidget *wid, int fps);

void ttk_widget_set_inv_fps (TWidget *wid, int fps_m1);

void ttk_widget_set_timer (TWidget *wid, int ms);

void ttk_add_header_widget (TWidget *wid);

void ttk_remove_header_widget (TWidget *wid);

These functions allow you to manage the widgets in your applications.

ttk_new_widget creates a new widget positioned at (x, y) and returns it.
The event handlers for this widget are set to do-nothing but valid func-
tions that return TTK_EV_UNUSED. You should never set a widget’s
event handler to NULL.

27

ttk_free_widget removes wid from its window if it has one, calls wid->destroy(),
and frees all memory associated with it.

ttk_add_widget adds wid to the widget list of win, setting the widget’s win
pointer in the process.

ttk_remove_widget removes wid from win’s widget list, if it is in it, and
sets wid’s win pointer to NULL.

ttk_widget_set_fps sets up wid->frame() to be called fps times per sec-
ond while events are being processed.

ttk_widget_set_inv_fps sets up wid->frame() to be called every fps_m1

seconds. The reason it’s called inv_fps is that it works somewhat
like a theoretical ttk_widget_set_fps(wid, 1/fps_m1) should work,
except that it obviously doesn’t use floating-point.

ttk_widget_set_timer sets up wid->timer() to be called every ms mil-
liseconds while events are being processed.

ttk_add_header_widget adds wid to the list of widgets to be drawn in the
header. The only events processed for these widgets will be frame and
timer, and they will be drawn about once every time you open a new
window, unless you use one of the periodic event handlers to set the
dirty flag more regularly.

ttk_remove_header_widget removes wid from the list of header widgets.

4.4 Events and Input

void ttk_set_global_event_handler (int (*fn)(int ev, int earg, int time));

void ttk_set_global_unused_handler (int (*fn)(int ev, int earg, int time));

int ttk_button_pressed (int button);

int ttk_input_start (TWidget *method);

void ttk_input_move (int x, int y);

void ttk_input_size (int *w, int *h);

void ttk_input_char (char ch);

void ttk_input_end();

28

The first two functions let you control event handling at a global level.

Each handler function has three parameters. The first is the event type,
one of TTK_BUTTON_DOWN, TTK_BUTTON_UP, or TTK_SCROLL. The second is the
button that was pushed, or the distance that was scrolled. Finally, if the
event was a button-up event, the third argument indicates the amount of
time for which the button was pressed.

The global event handler is called before widget-specific handlers, and
acts as a gateway to them: it can do whatever it wants, and if it returns 1
the event will not be pursued further.

The global unused handler is called after a widget-specific handler that
returned TTK_EV_UNUSED; its return code is like that of a widget event han-
dler, consisting of a combination of TTK_EV_* flags.

The other one—ttk_button_pressed—returns the time in milliseconds
since the program started that the specified button was pressed, or 0 if it is
not currently being held down.

Finally, we have the text input functions. They are as follows.

ttk_input_start sets up method to be a text-input method, as described
in section 1.5(?). The w and h members of the widget should be set,
but x and y should not be. These will be set to place the widget in
the bottom of the screen, to the right if it is not the full width of the
screen. Returns the height of the text input method.

ttk_input_move repositions the text input method currently in use to be at
(x, y). If text input is not started, this does nothing.

ttk_input_size places the width of the current input widget in *w, and the
height in *h, if text input is started. If either pointer is NULL, it will
be ignored.

ttk_input_char queues ch to be sent to the focused widget’s input event
handler. This may be called multiple-times for multiletter sequences.

ttk_input_end stops text input and frees the text input method.

29

4.5 iPod-Specific Functions

void ttk_update_lcd (int xstart, int ystart, int xend, int yend,

unsigned char *data);

These functions let you do low-level hardware things with the iPod. Some
of them do not work very well on X11.

ttk_update_lcd dumps a chunk of raw data to the iPod’s LCD; the data
should already be in the appropriate format for the iPod running. The
data block should be the size of the whole screen, but only the region
from (xstart, ystart) to (xend, yend) will be updated. This function
does not work on X11.

4.6 Appearance Functions

These functions manage the appearance subsystem. See Section 6.3 for de-
tails about how the properties are used in the drawing functions.

void ttk_ap_load (const char *filename);

TApItem *ttk_ap_get (const char *prop);

TApItem *ttk_ap_getx (const char *prop);

void ttk_ap_hline (ttk_surface srf, TApItem *ap, int x1,

int x2, int y);

void ttk_ap_vline (ttk_surface srf, TApItem *ap, int x,

int y1, int y2);

void ttk_ap_rect (ttk_surface srf, TApItem *ap, int x1,

int y1, int x2, int y2);

void ttk_ap_fillrect (ttk_surface srf, TApItem *ap, int x1,

int y1, int x2, int y2);

ttk_ap_load loads a color scheme from file, which must be a full path (not
relative to the schemes directory), over the current one. You should
probably do ttk_epoch++ directly after this, if you want the changes
to take effect immediately.

30

ttk_ap_get searches for the first instance of the appearance property with
key prop. If it is found, a pointer to an internal structure for it is re-
turned. If not, NULL is returned. You should not modify the returned
structure.

ttk_ap_getx is a version of ttk_ap_get for use in situations when you are
immediately dereferencing the result; if the specified prop is not found,
a dummy structure is returned instead of NULL.

ttk_ap_hline draws a horizontal line from (x1, y) to (x2, y) using the spec-
ified appearance item ap, on srf.

ttk_ap_vline draws a vertical line from (x, y1) to (x, y2) using the specified
appearance item ap, on srf.

ttk_ap_rect and ttk_ap_fillrect draw unfilled and filled rectangles, re-
spectively, from (x1, y1) to (x2, y2) using appearance item ap on surface
srf.

4.7 Graphics Functions

There are a lot of graphics-related functions, so this section is subdivided.

4.7.1 Surface and Color Functions

ttk_surface ttk_new_surface (int w, int h, int bpp);
ttk_surface ttk_load_image (const char *path);
void ttk_free_surface (ttk_surface srf);
void ttk_surface_get_dimen (ttk_surface srf, int *w, int *h);
ttk_surface ttk_scale_surface (ttk_surface srf, float factor);
void ttk_blit_image (ttk_surface src, ttk_surface dst, int dx, int dy);
void ttk_blit_image_ex (ttk_surface src, int sx, int sy, int sw, int sh,

ttk_surface dst, int dx, int dy);

ttk_color ttk_makecol (int r, int g, int b);
ttk_color ttk_makecol_ex (int r, int g, int b, ttk_surface srf);
void ttk_unmakecol (ttk_color col, int *r, int *g, int *b);
void ttk_unmakecol_ex (ttk_color col, int *r, int *g, int *b, ttk_surface srf);
ttk_color ttk_mapcol (ttk_color col, ttk_surface src, ttk_surface dst);

31

These functions let you create, destroy, and manipulate surfaces and col-
ors. (The terms “image” and “surface” may be used interchangeably in
TTK.)

ttk_new_surface creates a new surface of the specified width, height, and
bit depth, and fills it with white.

ttk_load_image creates a new surface whose contents and dimensions are
those of the specified image file. PNG is definitely supported; other
formats may or may not be.

ttk_free_surface frees memory associated with a surface, whether it was
created by ttk_new_surface or ttk_load_image.

ttk_surface_get_dimen places the width and height of srf into *w and *h

respectively.

ttk_scale_surface scales srf by factor to create a new surface. You
must free the returned surface separately from srf.

ttk_blit_image copies the full contents of src (or as much as will fit) in a
rectangle on dst whose upper-left hand corner is at (dx, dy).

ttk_blit_image_ex copies the rectangle (sx, sy)sw× sh on src to (dx, dy)
on dst.

ttk_makecol creates a ttk_color value suitable for drawing on the screen,
window surfaces, or anything with the same bit depth.

ttk_makecol_ex creates a ttk_color value suitable for drawing on srf.

ttk_unmakecol returns the RGB values used by a call to ttk_makecol.

ttk_unmakecol_ex returns the RGB values used by a call to ttk_makecol_ex
on srf.

ttk_mapcol maps a color value intended for src into one intended for dst.

32

4.7.2 Graphics Context Functions

ttk_gc ttk_new_gc();

ttk_gc ttk_copy_gc (ttk_gc other);

ttk_color ttk_gc_get_foreground (ttk_gc gc);

ttk_color ttk_gc_get_background (ttk_gc gc);

ttk_font ttk_gc_get_font (ttk_gc gc);

void ttk_gc_set_foreground (ttk_gc gc, ttk_color fgcol);

void ttk_gc_set_background (ttk_gc gc, ttk_color bgcol);

void ttk_gc_set_font (ttk_gc gc, ttk_font font);

void ttk_gc_set_usebg (ttk_gc gc, int flag);

void ttk_gc_set_xormode (ttk_gc gc, int flag);

void ttk_free_gc (ttk_gc gc);

These functions are used to create, destroy, and modify the properties of
graphics contexts.

ttk_new_gc creates a new graphics context, with all values set to 0.

ttk_copy_gc creates a copy of other that must be freed separately.

ttk_free_gc deallocates all memory associated with gc.

ttk_gc_get_foreground and friends retrieve the relevant property of the
GC.

ttk_gc_set_foreground sets the foreground color for drawing operations
with gc.

ttk_gc_set_background sets gc’s background color, which is only used
when drawing text, and only when the usebg flag is set.

ttk_gc_set_font sets the font to use when drawing text with gc.

ttk_gc_set_usebg sets the usebg flag for gc, which determines whether or
not a background is drawn when drawing text.

ttk_gc_set_xormode sets the xormode flag for gc, which determines whether
or not drawing operations invert pixels instead of setting them. This
flag is only guaranteed to work for the graphics primitive ttk_fillrect_gc.

33

4.7.3 Graphics Primitives

void ttk_pixel (ttk_surface srf, int x, int y, ttk_color col);
void ttk_pixel_gc (ttk_surface srf, ttk_gc gc, int x, int y);

void ttk_line (ttk_surface srf, int x1, int y1, int x2, int y2, ttk_color col);
void ttk_line_gc (ttk_surface srf, ttk_gc gc, int x1, int y1, int x2, int y2);

void ttk_rect (ttk_surface srf, int x1, int y1, int x2, int y2, ttk_color col);
void ttk_rect_gc (ttk_surface srf, ttk_gc gc, int x, int y, int w, int h);
void ttk_fillrect (ttk_surface srf, int x1, int y1, int x2, int y2, ttk_color col);
void ttk_fillrect_gc (ttk_surface srf, ttk_gc gc, int x, int y, int w, int h);

void ttk_poly (ttk_surface srf, int nv, short *vx, short *vy, ttk_color col);
void ttk_poly_gc (ttk_surface srf, ttk_gc gc, int n, ttk_point *v);
void ttk_fillpoly (ttk_surface srf, int nv, short *vx, short *vy, ttk_color col);
void ttk_fillpoly_gc (ttk_surface srf, ttk_gc gc, int n, ttk_point *v);

void ttk_ellipse (ttk_surface srf, int x, int y, int rx, int ry, ttk_color col);
void ttk_ellipse_gc (ttk_surface srf, ttk_gc gc, int x, int y, int rx, int ry);
void ttk_fillellipse (ttk_surface srf, int x, int y, int rx, int ry, ttk_color col);
void ttk_fillellipse_gc (ttk_surface srf, ttk_gc gc, int x, int y, int rx, int ry);

void ttk_bitmap (ttk_surface srf, int x, int y, int w, int h, unsigned short *bits, ttk_color col);
void ttk_bitmap_gc (ttk_surface srf, ttk_gc gc, int x, int y, int w, int h, unsigned short *bits);

These functions’ functions are, for the most part, obvious from their
names; only the non-obvious will be documented here.

ttk_*rect use the coordinates of upper-left and bottom-right corners;
ttk_*rect_gc use the upper-left corner and width and height.

ttk_*poly use separate arrays for X and Y coordinates; ttk_*poly_gc
use one array of ttk_point structures.

ttk_bitmap draws an array of bits on the surface at the specified (x, y).
The bitmap format is an array of unsigned shorts, filled from MSB to
LSB; that is, the MSB of the first short will be at (x, y). You should have a
whole number of shorts per row; unused bits in the least-significant part of
one at the end of a row should be set to 0. Bits set indicate pixels colored
col; bits cleared will not be drawn in any color. You must specify a correct
width and height. If you do not, your image will look . . . odd, very odd.

As an example, here’s a 3× 3 “ball”:

34

static unsigned short pong_ball[] = {

0x6000, // . X X .

0xf000, // X X X X

0xf000, // X X X X

0x6000, // . X X .

0 // not necessary

};

4.7.4 Text and Font Functions

ttk_fontinfo *ttk_get_fontinfo (const char *name, int size);

ttk_font ttk_get_font (const char *name, int size);

void ttk_done_fontinfo (ttk_fontinfo *fi);

void ttk_done_kfont (ttk_font f);

void ttk_text (ttk_surface srf, ttk_font fnt, int x, int y,

ttk_color col, const char *str);

void ttk_text_lat1 (ttk_surface srf, ttk_font fnt, int x, int y,

ttk_color col, const char *str);

void ttk_text_uc16 (ttk_surface srf, ttk_font fnt, int x, int y,

ttk_color col, const uc16 *str);

void ttk_text_gc (ttk_surface srf, ttk_gc gc, int x, int y,

const char *str);

int ttk_text_width (ttk_font fnt, const char *str);

int ttk_text_width_lat1 (ttk_font fnt, const char *str);

int ttk_text_width_uc16 (ttk_font fnt, const uc16 *str);

int ttk_text_width_gc (ttk_gc gc, const char *str);

int ttk_text_height (ttk_font fnt);

int ttk_text_height_gc (ttk_gc gc);

These functions are used to get fonts and draw text on surfaces.

ttk_get_fontinfo retrieves a ttk_fontinfo structure for the closest match
that can be found to name at size.

35

ttk_get_font returns ttk_get_fontinfo(name,size)->f; that is, it re-
turns the actual font, not the font information structure. Unless you
need the extra information, you should probably use this function.

ttk_done_fontinfo unloads the font described by fi; it will be reloaded
the next time it is requested. This is rather a good idea, since fonts
can take upwards of 600k of RAM. Reference-counting is employed;
thus, you must call ttk_get_fontinfo() and ttk_done_fontinfo()

an equal number of times.

ttk_done_font unloads the font f; see the documentation for ttk_done_fontinfo().

ttk_text_* draw the string str colored col using font fnt at (x, y) on srf.
The (x, y) coordinates refer to the top-left corner of the text.

ttk_text_gc draws the string str with its upper-left hand corner at (x, y)
on srf, using information in srf.

ttk_text_width_* return the width of str in the font fnt; ttk_text_width_gc
does the same thing for the font selected in the graphics context gc.

ttk_text_height returns the height of one line of text in fnt; ttk_text_height_gc
is the analagous graphics-context version. (All characters in TTK fonts
are the same height.)

Character encoding is UTF-8 by default. To draw Latin-1 text, call
ttk_text_lat1; to draw Unicode text, call ttk_text_uc16. The uc16 type
is equivalent to an unsigned short.

4.8 Miscellaneous

This section contains all the functions that didn’t fit anywhere else.

void ttk_gfx_update (ttk_surface srf);

int ttk_getticks();

void ttk_delay (int ms);

ttk_timer ttk_create_timer (int ms, void (*callback)());

36

void ttk_destroy_timer (ttk_timer tim);

void ttk_set_scroll_multiplier (int num, int denom);

void ttk_set_transition_frames (int frames);

void ttk_set_clicker (void (*clickfn)());

void ttk_click();

ttk_gfx_update(ttk_screen->srf) will cause the current screen image
to be actually drawn on the LCD. This is necessary on SDL, among other
things, but you’ll never have to use it yourself unless you want some special
effects.

ttk_getticks returns the number of milliseconds that have passed since
the program started. ttk_delay sleeps for ms milliseconds.

ttk_create_timer creates and returns a new timer set to call callback
once, ms milliseconds from now. The returned ttk_timer can be used as an
argument to ttk_destroy_timer to stop it from firing.

ttk_set_scroll_multiplier is the “wheel sensitivity” setting; it sets
things up so a physical scroll of denom units will be treated as one of num units
by all widgets. (Try to keep the denominator low; something like 127/128
would fire 127 scroll events at once, every time you scrolled continuously for
128!)

ttk_set_transition_frames sets the number of frames used by the win-
dow transition; 1 or less turns the transition off. ttk_set_clicker sets
the function used when event handlers return TTK_EV_CLICK; its default is
ttk_click(), which clicks the piezo on the iPod and does nothing on the
desktop.

4.9 Nano-X Emulation

This section contains the complete list of all emulated Nano-X functions.
They are not documented here; use a Nano-X API reference for that. Func-
tions not in this list are unimplemented. Arguments named _unusedn are
ignored.

37

int t_GrOpen();
void t_GrClose();
#define GrFlush() // not needed
#define GrSelectEvents(w,e) // not needed
int t_GrPeekEvent (t_GR_EVENT *ev);
#define GrCheckNextEvent(e) t_GrGetNextEventTimeout(e,0)
int t_GrGetNextEventTimeout (t_GR_EVENT *ev, int timeout);
void t_GrGetScreenInfo (t_GR_SCREEN_INFO *inf);

t_GR_WINDOW_ID t_GrNewWindow (int _unused1, int x, int y, int w, int h,
int _unused2, int _unused3, int _unused4);

t_GR_WINDOW_ID t_GrNewWindowEx (int _unused1, const char *title, int _unused3,
int x, int y, int w, int h, int _unused4);

void t_GrDestroyWindow (t_GR_WINDOW_ID w);
void t_GrMapWindow (t_GR_WINDOW_ID w);
void t_GrUnmapWindow (t_GR_WINDOW_ID w);
void t_GrResizeWindow (t_GR_WINDOW_ID win, int w, int h);
void t_GrMoveWindow (t_GR_WINDOW_ID win, int x, int y);
#define GrSetWindowBackgroundColor(w,c) // not implemented
void t_GrClearWindow (t_GR_WINDOW_ID w, int _unused);
void t_GrGetWindowInfo (t_GR_WINDOW_ID w, t_GR_WINDOW_INFO *inf);
t_GR_WINDOW_ID t_GrGetFocus();
t_GR_WINDOW_ID t_GrNewPixmap (int w, int h, int _unused1);

t_GR_GC_ID t_GrNewGC();
t_GR_GC_ID t_GrCopyGC (t_GR_GC_ID other);
void t_GrDestroyGC (t_GR_GC_ID gc);
void t_GrSetGCForeground (t_GR_GC_ID gc, t_GR_COLOR col);
void t_GrSetGCBackground (t_GR_GC_ID gc, t_GR_COLOR col);
void t_GrSetGCUseBackground (t_GR_GC_ID gc, int flag);
void t_GrSetGCMode (t_GR_GC_ID gc, int mode);
void t_GrSetGCFont (t_GR_GC_ID gc, t_GR_FONT_ID font);
void t_GrGetGCInfo (t_GR_GC_ID gc, t_GR_GC_INFO *inf);

void t_GrPoint (t_GR_DRAW_ID dst, t_GR_GC_ID gc, int x, int y);
void t_GrLine (t_GR_DRAW_ID dst, t_GR_GC_ID gc, int x1, int y1, int x2, int y2);
void t_GrRect (t_GR_DRAW_ID dst, t_GR_GC_ID gc, int x, int y, int w, int h);
void t_GrFillRect (t_GR_DRAW_ID dst, t_GR_GC_ID gc, int x, int y, int w, int h);
void t_GrPoly (t_GR_DRAW_ID dst, t_GR_GC_ID gc, int n, t_GR_POINT *v);
void t_GrFillPoly (t_GR_DRAW_ID dst, t_GR_GC_ID gc, int n, t_GR_POINT *v);
void t_GrEllipse (t_GR_DRAW_ID dst, t_GR_GC_ID gc, int x, int y, int rx, int ry);
void t_GrFillEllipse (t_GR_DRAW_ID dst, t_GR_GC_ID gc, int x, int y, int rx, int ry);
#define GrArc(x,y,a,b,c,d,e,f,g,h,m) // not implemented
void t_GrCopyArea (t_GR_DRAW_ID dst, t_GR_GC_ID gc, int dx, int dy, int sw, int sh,

t_GR_DRAW_ID src, int sx, int sy, int _unused1);

38

void t_GrBitmap (t_GR_DRAW_ID dst, t_GR_GC_ID gc, int x, int y, int w, int h,
t_GR_BITMAP *imgbits);

t_GR_IMAGE_ID t_GrLoadImageFromFile (const char *file, int _unused1);
void t_GrDrawImageToFit (t_GR_DRAW_ID dst, t_GR_GC_ID gc, int x, int y, int w, int h,

t_GR_IMAGE_ID img);
void t_GrFreeImage (t_GR_IMAGE_ID img);
void t_GrText (t_GR_DRAW_ID dst, t_GR_GC_ID gc, int x, int y, const void *str,

int count, int _unused);

t_GR_FONT_ID t_GrCreateFont (const char *path, int size, struct t_GR_LOGFONT *_unused1);
void t_GrDestroyFont (t_GR_FONT_ID font);
void t_GrGetGCTextSize (t_GR_GC_ID gc, const void *str, int count, int flags,

int *width, int *height, int *base);

t_GR_TIMER_ID t_GrCreateTimer (t_GR_WINDOW_ID win, int ms);
void t_GrDestroyTimer (t_GR_TIMER_ID tim);

39

Chapter 5

Widgets

TTK uses widgets to implement its user interface; to spare everyone the
trouble of inventing a wheel (and ensure that no one decides to invent a square
wheel), four builtin widgets are provided. Each is considerably complex and
has a lot of features. They are described here.

5.1 Menu

The menu widget provides a flexible framework for a hierarchial menu system
like that used by the standard Apple firmware on the iPod. A menu is
basically a collection of items; various internal structures are kept, but the
only one you need to concern yourself with is the item structure. It will
be described below. There are two types of items: “selecting” items and
“setting” items. Selecting items are those that launch a new window; setting
items are those, like the ones in the Apple firmware’s settings menu, that
change a setting when selected. You will generally use different combinations
of members in the menu structure for each type of item.

5.1.1 The Widget

typedef struct ttk_menu_item

{

const char *name;

40

struct {

TWindow *(*makesub) (struct ttk_menu_item *item);

TWindow *sub;

};

int flags;

void *data;

const char **choices;

int cdata;

void (*choicechanged)(struct ttk_menu_item *item, int cdata);

int (*choiceget)(struct ttk_menu_item *item, int cdata);

int choice;

int (*visible)(struct ttk_menu_item *item);

int free_name;

int free_data;

/* readonly */ int menuwidth, menuheight;

} ttk_menu_item;

Before we discuss the specific members, a word about the structure of
this structure is appropriate. The order of the members and such is designed
to allow easy initialization in a static array. For instance:

{ "My Nice Menu Item", {my_menu_handler}, TTK_MENU_ICON_SUB, my_data }

As such, the members are not in much order. If you want to make a menu
item a settings item instead of a selection item (to be discussed later),
the thought is that you will indicate the appropriate members with GNU
.memb = val syntax, so as to avoid having to specify 0 for all the inapplica-
ble members before it.

Ease of definition also prompted the seemingly crazy anonymous-structure
idea, since in the majority of cases you want to define either a window or a
handler to produce one; however, a union is inappropriate, since the menu
widget uses both fields at once internally. As such, an anonymous structure
is used; while this requires you to do {my_menu_handler} for a handler func-
tion or {.sub=my_window} for a (less common) already-created window, it
is much less confusing than having an extra zero in the list for the unused
choice.

And now, for the members themselves...

41

name is the name of the menu item: what will be displayed on the screen. If
the name is longer than the screen width, it will be abbreviated when
unselected and scrolled horizontally when selected.

〈anon〉.makesub is a pointer to a handler function that will be called when
an item is first selected, and will return a window that will be displayed
from then on when that item is selected.

〈anon〉.sub is a pointer to a window that will be displayed when this item
is selected. Usually, you want to leave this as 0, and use a handler
function.

flags is a bitwise OR of the flags enumerated below.

data is data for the handler function, or whatever else you want to use it
for.

choices is a NULL-terminated array of strings that list the choices for this
setting. Its non-NULL presence implies that this menu item is a setting
item.

cdata is some more data, this time an integer that you can use for whatever
you want

choicechanged is a function that is called whenever the user changes the
setting for this item. It may be useful if the setting concerns something
you want the user to have immediate feedback on.

choiceget is a function called once, when the item is added to the menu or
the menu is initialized, that is expected to return the current setting
for this item. If this is NULL, the initial value of choice will be used.

choice stores the current choice for the setting of this item, as an index into
choices[].

visible is a function that will be called quite often, if defined, with the item
structure as argument. It should return nonzero if the item is to be
displayed. If it is set to NULL, the item will always be displayed.
Changes in displayedness may take about a second to show onscreen.

42

menuwidth and menuheight contain the width and the height of the menu
this item is in; this is used by the submenu handler function, among
others.

free_name and free_data indicate whether the name and the data fields
should be respectively freed when the menu is.

5.1.2 Flags

The flags are:

#define TTK_MENU_ICON_SUB 01

#define TTK_MENU_ICON_EXE 02

#define TTK_MENU_ICON_SND 04

#define TTK_MENU_ICON 07

#define TTK_MENU_MADESUB 010

/* and others you don’t need to know about */

The TTK_MENU_ICON_* flags indicate which icon, if any, you want dis-
played on the right of your menu item. The icon will flash when the item is
selected. You can use TTK_MENU_ICON as a bitmask to check for the presence
of any icon; you shouldn’t set it yourself.

If you specified a sub and not a makesub, you need to set the TTK_MENU_MADESUB
flag. Basically, when a menu item is selected, this flag is checked: if it is set,
the sub window is opened; if it is not, makesub is called.

5.1.3 Window Lifetimes

This is its own subsection because it’s important.

The menu handler will generally only call makesub once, and use the
window it returns from then on. If you wish to avoid this behavior, set
win->data = 0x12345678 at some point; the next time that item is selected,
the window will be freed and recreated from makesub.

If, however, the “window” is set to a directive like TTK_MENU_DONOTHING

(as explained below), the returned value will not be cached; the menu handler
function will be called again next time the item is selected.

43

5.1.4 The Menu Handler

The menu handler—that 〈anon〉.makesub function—can do one of the follow-
ing things. Those that are not just creating a new window and returning it
involve TTK_MENU_* constants, basically integers cast to TWindow *. These
will be called “directives” and are saved just like normal window returns.

Make and open new window. The handler should create the window and
return it, but should not show it onscreen.

No change in open window. The handler should do whatever it wants
and return TTK_MENU_DONOTHING.

“Back” item. The handler should do whatever it needs to and return TTK_MENU_UPONE;
the menu’s window will be closed.

“Main Menu” item. The handler should return TTK_MENU_UPALL; this will
close all windows from here up that are pure menu windows (without
change in the draw handler) and are set closeable.

Window already opened by handler’s actions. This is the case, for in-
stance, with legacy functions that both create and open a window. The
handler should set item->sub = ttk_windows->w and return TTK_MENU_ALREADYDONE.

Menu event handler should return TTK_EV_DONE to exit. Return TTK_MENU_QUIT.
You have no control over the return value from ttk_run().

Menu window should be hidden, child window shown in its place.
Show the child window with ttk_show_window() and return TTK_MENU_REPLACE

from the menu handler.

+ Window should be reopened every time the item is selected. The
handler should, in addition, set the window’s data member to 0x12345678.

5.1.5 Menu Data Assemblers

Since the menu handler has only the data pointer to work with, and many
widgets require more than one parameter, and probably not a void *, menu-
able widgets in TTK provide two functions. The first is the menu handler,

44

and is generally called ttk_mh_name, where name is something descriptive
like textarea. The second is something called a menu data assembler:
it is named ttk_md_name. Taking the textarea example, which needs two
parameters (the text and the number of pixels between lines), a menu item
would look like this:

{ "My Nice Textarea", {ttk_mh_textarea}, 0, ttk_md_textarea (the_text, 14) }

This dual-function mh/md usage yields both simplicity of definition and sim-
plicity of programming, and its use should be encouraged.

5.1.6 Functions

TWidget *ttk_new_menu_widget (ttk_menu_item *items, ttk_font font, int w, int h);
ttk_menu_item *ttk_menu_get_item (TWidget *_this, int i);
ttk_menu_item *ttk_menu_get_item_called (TWidget *_this, const char *s);
ttk_menu_item *ttk_menu_get_selected_item (TWidget *_this);
void ttk_menu_set_closeable (TWidget *_this, int closeable);
void ttk_menu_sort (TWidget *_this);
void ttk_menu_sort_my_way (TWidget *_this, int (*cmp)(const void *, const void *));
void ttk_menu_append (TWidget *_this, ttk_menu_item *item);
void ttk_menu_insert (TWidget *_this, ttk_menu_item *item, int pos);
void ttk_menu_remove (TWidget *_this, int pos);
void ttk_menu_remove_by_ptr (TWidget *_this, ttk_menu_item *item);
void ttk_menu_remove_by_name (TWidget *_this, const char *name);
void ttk_menu_item_updated (TWidget *, ttk_menu_item *item);
void ttk_menu_updated (TWidget *_this);

TWindow *ttk_mh_sub (struct ttk_menu_item *item);
void *ttk_md_sub (struct ttk_menu_item *submenu);

/*
* The following are standard handler functions. You should call them only from your own
* overridden handlers. They will not be documented.
*/

void ttk_menu_draw (TWidget *_this, ttk_surface srf);
int ttk_menu_scroll (TWidget *_this, int dir);
int ttk_menu_down (TWidget *_this, int button);
int ttk_menu_frame (TWidget *_this);
void ttk_menu_free (TWidget *_this);

45

ttk_new_menu_widget creates and returns a new menu widget created from
the list of items in items. The menu will be displayed with the font
font, but submenus will be displayed with ttk_menufont for various
reasons. The menu will be w× h pixels in dimension, located at (0, 0).
If items = 0, all items later added to the menu will be freed
when it is freed. If not, they won’t.

ttk_menu_get_item returns item number i in the supplied menu.

ttk_menu_get_item_called returns the first item whose name compares
equal to s.

ttk_menu_get_selected_item returns the selected item in the supplied menu.

ttk_menu_set_closeable sets the closeable flag for the specified menu. When
this flag is cleared, the menu may not be closed by pressing Menu.
When it is set (the default), it may.

ttk_menu_sort sorts the items in the supplied menu by case-sensitive name.

ttk_menu_sort_my_way sorts the items in the supplied menu using the com-
parator function cmp, of the sort supplied to qsort. The parameters
are actually ttk_menu_item **s, and should be cast as such.

ttk_menu_append adds item to the end of the specified menu. Variable
allocation for internal structures is handled automatically.

ttk_menu_insert inserts item into position pos in the menu. If pos is
greater than the number of items in the menu, this function behaves
like ttk_menu_append.

ttk_menu_remove removes item number pos in the menu.

ttk_menu_remove_by_ptr removes the first instance, if any, of item in the
menu.

ttk_menu_remove_by_name removes all items whose name field compares
equal to name.

ttk_menu_item_updated updates various internal data structures for item.
It should be called whenever you modify the item structure.

46

ttk_menu_updated restores the menu to the state it was in when it was
initialized. This includes removing all appended and inserted
items. You probably won’t need to use this function very often.

ttk_mh_sub is the menu handler for launching a submenu.

ttk_md_sub creates the data structure used by ttk_mh_sub. This is just a
cast of the passed submenu item list to void *.

5.2 Textarea

The textarea widget provides a way to scroll through a long string (maybe
loaded from a file, etc). It does automatic word-wrapping with a good and
fast algorithm (only one pass over the text). It allows you to scroll through
the text with the scroll wheel, or move a page at a time with the |<< and
>>| buttons.

Really, this is an extremely simple widget from an API point of view.
The functions (not many) are described below.

TWidget *ttk_new_textarea_widget (int w, int h, const char *text,

ttk_font font, int baselineskip);

TWindow *ttk_mh_textarea (struct ttk_menu_item *this);

void *ttk_md_textarea (char *text, int baselineskip);

/* Standard handlers, don’t call except from your own.

Not documented here. */

void ttk_textarea_draw (TWidget *this, ttk_surface srf);

int ttk_textarea_scroll (TWidget *this, int dir);

int ttk_textarea_down (TWidget *this, int button);

void ttk_textarea_free (TWidget *this);

ttk_new_textarea_widget creates and returns a new textarea widget based
on the passed parameters. The widget will be w × h pixels at (0, 0).
The text will be displayed using font in the widget. The text will be
wrapped once and never looked at again; changing it will do nothing,

47

since the widget operates on a copy and frees it when it itself is freed.
baselineskip is the number of pixels between two lines of text; this
should be a few pixels above ttk_text_height(font) but its exact
value is a question of style.

ttk_md_textarea creates a data structure for use by ttk_mh_textarea when
some menu item is selected. You must pass the text and baselineskip

values; they will eventually be passed to ttk_new_textarea_widget.
This will set font to ttk_textfont, and w and h to the width and
height of the menu where the item is selected.

ttk_mh_textarea is the textarea menu handler. item->data should be set
to the pointer returned from ttk_md_textarea.

5.3 Slider

The slider widget is used to set an integer value, maybe a setting. It con-
strains the value between a specified minimum and maximum and allows
the user to select a value between those two with the scroll wheel. A user-
specified callback may be used to allow e.g. settings to change immediately,
so the user can see what they are selecting. You may also set your own slider
image, to be used instead of the default that comes from the current color
scheme.

On the iPod, scroll events are amplified so that a full rotation of the wheel
is equal to the distance between min and max on the slider.

The (not too many) functions of the API for this widget are described
below.

TWidget *ttk_new_slider_widget (int x, int y, int w, int min,

int max, int *val, const char *title);

void ttk_slider_set_bar (TWidget *this, ttk_surface empty, ttk_surface full);

void ttk_slider_set_callback (TWidget *this, void (*cb)(int cdata, int val),

int cdata);

TWindow *ttk_mh_slider (struct ttk_menu_item *this);

void *ttk_md_slider (int w, int min, int max, int *val);

48

/* Standard handlers, don’t call except from your own.

Not documented here. */

void ttk_slider_draw (TWidget *this, ttk_surface srf);

int ttk_slider_scroll (TWidget *this, int dir);

int ttk_slider_down (TWidget *this, int button);

void ttk_slider_free (TWidget *this);

ttk_new_slider_widget creates a new slider widget w × h pixels, with its
upper-left corner at (x, y). The left end of the slider will correspond to
the value min, the right end to max, and the initial value will be *val.
The val pointer must be valid for the lifetime of the widget, or until
you call ttk_slider_set_callback. If you set title to something
nonzero, it will be displayed above the slider.

ttk_slider_set_bar sets the slider to look like full when val = max and
empty when val = min. At points in between, the left side of the slider
will be taken from the left side of full and the right side will be taken
from the right side of empty.

ttk_slider_set_callback causes cb to be called with two parameters—
cdata and the value that was just set—whenever the value is changed.
After this function is called, the original val pointer passed to the
widget constructor is allowed to go out of scope.

ttk_md_slider returns a structure to be used in the data pointer of a
ttk_menu_item whose handler is set to ttk_mh_slider. Its param-
eters are the same as those of the widget constructor, but title is
omitted and set to zero.

ttk_mh_slider is the menu handler function that creates and returns a win-
dow containing a slider when some menu item is selected.

5.4 Image Viewer

The image viewer is one of the most powerful widgets in TTK. It allows
you to view an image (PNG, JPEG, PNM, XPM, and various uncompressed
formats are supported) in any of a variety of zoom levels, and scroll through it

49

if it is bigger than your screen. On grayscale displays, it uses Floyd-Steinberg
dithering to generate a good-looking picture. While the image viewer widget
is active, the scroll wheel is used to scroll on either the x or the y axis, and the
center button changes the axis being scrolled upon. |<< and >>| are used to
change the zoom level; >/|| selects actual size display, or the previous zoom
level if the current display is actual-size. MENU, as always, exits the widget.

The function API of this widget consists of exactly one important func-
tion:

TWindow *ttk_new_imgview_widget (int w, int h, ttk_surface img);

This function creates a new image viewer widget, w×h pixels, with its upper-
left corner at (0, 0), to display img. The supplied image should remain valid
throughout the lifetime of the widget. It will not be freed when the widget
is freed.

To launch this widget from a menu item, the obligatory mh/md function
pair is provided.

TWindow *ttk_mh_imgview (struct ttk_menu_item *this);

void *ttk_md_imgview (ttk_surface srf);

The operation of these functions should be self-explanatory by now, except
for the fact that, since no width and height are provided, the created widget
uses the width and height of the parent menu.

50

Chapter 6

Data Files

TTK requires several data files present to run properly. You must have a
font list with at least one valid font in it, and a color scheme called default

(which may be a symlink). This chapter describes the format of these files.

6.1 Fonts

TTK supports several types of font files.

PCF and Microwindows FNT are supported on all versions of TTK,
for both the Nano-X and SDL backends. They can have variable foreground
and background colors, but not anti-aliasing.

SFont fonts are a pair of .png files, one the RGB inverse of the other,
named 〈font〉.png for the black version and 〈font〉-i.png for the white ver-
sion. If you set the PNG background to transparent, these may have anti-
aliasing and variable background colors; if not, anti-aliased fonts can only
have the background they have in the file. In all cases, foreground color can
only be “black” (the color of the characters in the .png file) and “white”
(the color of the characters in the -i.png file).

To create an SFont font, draw with a graphics program the string

! " # $ % & ’ () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _ ‘

a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

51

(all on one line, with spaces between each character; note that the last charac-
ter of the second line is a backtick/grave accent). Use antialiasing if you want
it, and make the text the color you want it to be when non-inverted. From
there, you have two options: (1) you can find sfontmaker on Google and run
it on the file; or (2) you can put magenta (all red and blue, no green) pixels
on the top row in the spaces between characters manually. Save the image
as 〈font〉.png. Then, invert it and save the inverted version as 〈font〉-i.png.

SFont fonts may only be used when TTK is compiled without -DNO_SF,
which is not the default. They only work on the iPod photo.

TrueType fonts are supported, but they may be slow. TTK must be
compiled with -DNO_TF.

6.2 Font List

All TTK programs use one set of fonts, which will be loaded on demand and
stay loaded for the lifetime of the program. This list of fonts is defined in
the font list file, which uses a special but simple format.

All font-related things are located in the “font directory”; this is /usr/share/fonts
on the iPod and ./fonts/ on the desktop. The font list file is fonts.lst

in this directory. (The name is subtly different from that used by podzilla

because the format is subtly different as well.)

In the file, lines that start with # are comments. All other lines, except
blank lines, should follow this format:

[File_Name_without_extension] (Displayed name) <SZ> {OFF}

The four fields may occur in any order, and {OFF} is optional. Each must be
delimited with the specified delimiters.

[Filename] is the name of the font in the font directory, without the
extension. The best extension that exists and is supported will be used. The
search order is: SFont, TrueType, fnt, pcf. The first two will only be tested
on color displays (iPod photo).

(Displayed name) is the name of the font that will be used in the appli-
cation, and what will be expected to be passed to ttk_get_font[info]().

52

<SZ> is the point size of the font. This is used only to find the closest
match when getting a font; it has no effect on the return value from
ttk_text_height() or anything else. If the font should be considered as
matching any size, set this to 0.

{OFF} is a vertical offset in pixels for when the font is drawn. Some fonts’
characters are specified too high or too low in their bounding boxes, and
the result can look unsightly. To counteract this, you can specify a pixel
offset that will be added to the y coordinate for each text-drawing operation.
It does not affect the return value from ttk_text_height(). You must
specify the sign (+ or −). For example, for the version I had of the
Chicago font, I used {+2}.

6.3 Color Schemes

You already know about the color scheme API; what you do not know, and
what you are about to learn, is the format of the color scheme files themselves.
Color scheme files are composed of three types of lines: comments, which
must start with #; commands, like \def black #000000; and specifications,
like header: fg => black, bg => white. Blank lines are ignored.

Color scheme files should generally have extension .cs and be placed
in the schemes directory, which is /usr/share/schemes on the iPod and
./schemes/ on the desktop.

Commands are all lines that start with a \. The very first line of the
file should be something like

\name My Wonderful Color Scheme

where the actual name is whatever you want; this is used by podzilla to
select a color scheme. The only other command recognized is \def, which has
the format \def 〈name〉 〈value〉. 〈name〉 should be something like black or
white or aquamarine; 〈value〉 should be an RGB value specified in six-digit
hexidecimal, like HTML: #abcdef.

Specifications are the meat of the color-scheme file. Here are some
example specification lines that demonstrate the required format.

53

(1) name: key1 => val1, key2 => val2, key3.s1 => val3s1,

(2) key3.s2 => val3s2

(3) key4 => val, key5 => val

(4) other:

(5) key => val

Specification lines have two parts: a top-level specification (“name” and
“other” in this example; something like “window” or “header” or “menu” in
actuality) and a list of key-value pairs. Either or both may be omitted. If
present, the top-level specification must begin the line and must be followed
by a colon. If not, the last encountered one is used.

The list of key-value pairs is separated by commas, and the key and the
value are separated by =>. The key should be a string of (usually) lowercase
letters; the actual name of this property will be 〈topspec〉.〈key〉. The key
may contain dots, which are probably used for further subdivision but don’t
have to be.

The value is a collection of one or more things separated by spaces. There
are three types of values: solid colors, background images, and spacing ad-
justments. Solid colors are specified by #rrggbb or a name that has been
\defined to that, and will result in lines, rectangles, and text being drawn
with that color. Background images apply to filled rectangles only, and are
of the form @file.png; file.png should be a file in the schemes directory,
which you might want to prefix with the basename of your color scheme
filename. They will be tiled to fit.

Spacing applies to horizontal and vertical lines and rectangles; it lets
you “nudge” things in or out (rectangles), left or right (vlines), or up or
down (hlines). It is specified as a required sign (+ or −) followed by a whole
number. Spacing on a vertical line pushes it right that many pixels if positive,
left that many if negative; on a horizontal line, positive values push the line
down. For rectangles, positive spacing of n makes the rectangle thinner by
2n in both dimensions, with the same center; negative dimensions make it
thicker. Think of spacing for rectangles as like the “shrink selection” tool in
your graphics program with that many pixels as an argument.

A color scheme that emulates the Apple firmware is below.

\name Standard (B&W)

54

Supplied with TTK as schemes/mono.cs.
\def black #000000
\def white #ffffff
\def gray #a0a0a0
\def dkgray #505050

header: bg => white, fg => black, line => black -1, accent => gray
battery: border => black, bg => white, fill.normal => black +1,

fill.low => dkgray +1, fill.charge => gray
lock: border => black, fill => black

loadavg: bg => gray, fg => dkgray, spike => black

window: bg => white, fg => black, border => gray -3
dialog: bg => white, fg => black, line => black,

title.fg => black,
button.bg => white, button.fg => black, button.border => gray,

button.sel.bg => gray, button.sel.fg => black, button.sel.border => black,
button.sel.inner => black +1

error: bg => gray, fg => black, line => black,
title.fg => black,
button.bg => gray, button.fg => black, button.border => black,
button.sel.bg => dkgray, button.sel.fg => white, button.sel.border => black,
button.sel.inner => gray +1

scroll: box => black, bg => white +1, bar => dkgray +2

menu: bg => white, fg => black, choice => black, icon => black,
selbg => black, selfg => white, selchoice => white, selicon => white

slider: border => black, bg => white, full => black
textarea: bg => white, fg => black

That file demonstrates all the properties used by TTK and podzilla;
most of them should be self-explanatory if you know that sel means “se-
lected” and fg usually refers to the color of text.

You could make an “inverted” version simply by changing the color defi-
nitions at the top.

That’s all! Have fun!

55

Chapter 7

Acknowledgements

TTK was written by Joshua Oreman, with input from the other members of
the iPodLinux development team.

This API reference was typeset with LATEX2ε and is released freely for
any use whatsoever. TTK itself is licensed under the GNU General Public
License; see the file COPYING in the TTK source distribution for details.

56

	Architecture
	Why Use TTK?
	Windows
	Widgets
	Events
	Immediate Events
	Periodic Events
	Computed Events

	Text Input
	Graphics Drawing
	Appearance
	Nano-X Emulation

	Macros and Globals
	Macros
	Globals

	Data Structures
	TWindow
	TWidget
	TWidgetList and TWindowStack
	TApItem
	ttk_fontinfo and ttk_screeninfo

	Function Reference
	Initialization and Querying
	Window Management
	Widget Management
	Events and Input
	iPod-Specific Functions
	Appearance Functions
	Graphics Functions
	Surface and Color Functions
	Graphics Context Functions
	Graphics Primitives
	Text and Font Functions

	Miscellaneous
	Nano-X Emulation

	Widgets
	Menu
	The Widget
	Flags
	Window Lifetimes
	The Menu Handler
	Menu Data Assemblers
	Functions

	Textarea
	Slider
	Image Viewer

	Data Files
	Fonts
	Font List
	Color Schemes

	Acknowledgements

